Зарегистрироваться
Восстановить пароль
FAQ по входу

Scikit-Learn

  • Без фильтрации типов файлов
A
New York: Packt Publishing, 2017. — 368 p. About This Book Learn how to handle a variety of tasks with Scikit-Learn with interesting recipes that show you how the library really works Use Scikit-Learn to simplify the programming side data so you can focus on thinking Discover how to apply algorithms in a variety of situations Who This Book Is For If you're a data scientist...
  • №1
  • 11,29 МБ
  • добавлен
  • описание отредактировано
G
Packt Publishing, 2017. — 530 p. — ISBN: 978-1788833479. Use Python and scikit-learn to create intelligent applications Discover how to apply algorithms in a variety of situations to tackle common and not-so common challenges in the machine learning domain A practical, example-based guide to help you gain expertise in implementing and evaluating machine learning systems using...
  • №2
  • 9,97 МБ
  • добавлен
  • описание отредактировано
J
Packt Publishing, 2020. — 164 p. — ISBN: 978-1-78934-370-0. Deploy supervised and unsupervised machine learning algorithms using scikit-learn to perform classification, regression, and clustering. Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest...
  • №3
  • 1,88 МБ
  • добавлен
  • описание отредактировано
K
Jamba Academy, 2023. — 423 p. — ISBN-13: 978-1960833044. Are you ready to dive into the world of Python Machine Learning? Look no further! "Python Machine Learning: A Beginner's Guide to Scikit-Learn" is the perfect guide for you. Written by experienced data scientist, Rajender Kumar, this book takes you on a journey through the basics of Machine Learning and the powerful...
  • №4
  • 2,60 МБ
  • добавлен
  • описание отредактировано
P
Apress, 2019. — 208 p. — ISBN13: (electronic): 978-1-4842-5373-1. Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms....
  • №5
  • 2,28 МБ
  • добавлен
  • описание отредактировано
В этом разделе нет файлов.

Комментарии

В этом разделе нет комментариев.